Towards Cross-modal Organ Translation and Segmentation: A
Cycle- and Shape-Consistent Generative Adversarial Network!

Jinzheng Cai*?, Zizhao Zhang?, Lei CuiP, Yefeng Zheng®, Lin Yang®

& University of Florida
b Northwest University
¢ Siemens Healthcare

Abstract

Synthesized medical images have several important applications. For instance, they can be used as an
intermedium in cross-modality image registration or used as augmented training samples to boost the
generalization capability of a classifier. In this work, we propose a generic cross-modality synthesis
approach with the following targets: 1) synthesizing realistic looking 2D/3D images without needing
paired training data, 2) ensuring consistent anatomical structures, which could be changed by geometric
distortion in cross-modality synthesis and 3) more importantly, improving volume segmentation by using
synthetic data for modalities with limited training samples. We show that these goals can be achieved with
an end-to-end 2D /3D convolutional neural network (CNN) composed of mutually-beneficial generators and
segmentors for image synthesis and segmentation tasks. The generators are trained with an adversarial
loss, a cycle-consistency loss, and also a shape-consistency loss (supervised by segmentors) to reduce
the geometric distortion. From the segmentation view, the segmentors are boosted by synthetic data
from generators in an online manner. Generators and segmentors prompt each other alternatively in an
end-to-end training fashion. We validate our proposed method on three datasets, including cardiovascular
CT and magnetic resonance imaging (MRI), abdominal CT and MRI, and mammography X-rays from
different data domains, showing both tasks are beneficial to each other and coupling these two tasks
results in better performance than solving them exclusively.

1 Introduction

In current clinical practice, multiple imaging modalities may be available for disease diagnosis and surgical
planning [6,7]. For a specific patient group, a certain imaging modality might be more popular than
others. Due to the proliferation of multiple imaging modalities, there is a strong clinical need to develop
a cross-modality image transfer analysis system to assist clinical treatment. For example, synthesized
computed tomography (CT) data can provide X-ray attenuation map for radiation therapy planning [4].

Neural networks have been widely used for medical image analysis, such as detection [39], segmentation
[36,38], and classification [50,51]. Such methods are often generic and can be extended from one imaging
modality to the other by re-training on the target imaging modality. However, a sufficient number of
representative training images are required to achieve enough robustness. In practice, it is often difficult
to collect enough training images, especially for a new imaging modality not well established in clinical
practice yet. Synthesized data are often used to as supplementary training data in hope that they can
boost the generalization capability of a trained neural network. This paper presents a novel method to
address the above-mentioned two demanding tasks simultaneously (Fig. 1). The first is cross-modality
(domain) translation and the second is improving segmentation models by making use of synthesized
data.
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Figure 1. Our method learns two parallel sets of generators G 4,p and segmentors S,,p for two
modalities A and B to translate and segment holistic 3D volumes. Here we illustrate using CT and MRI
pancreatic 3D images. Best viewed in color.

To synthesize medical images, recent advances [10,32] have used generative adversarial networks
(GANSs) [14] to formulate it as an image-to-image translation task. These methods require pixel-to-pixel
correspondence between two domain data to build direct cross-modality reconstruction. However, in a
more common scenario, multimodal medical images are in 3D and do not have cross-modality paired
data. A method to learn from unpaired data is the more general purpose. Furthermore, tomography
structures (e.g., shape), in medical images/volumes, contain diagnostic information. Keeping their
invariance in translation is critical. However, when using GANs without paired data, due to the lack of
direct reconstruction, relying on discriminators to guarantee this requirement is not enough as we explain
later.

It is an active research area by using synthetic data to overcome the insufficiency of labeled data in
CNN training. In the medical image domain, people are interested in learning unsupervised translation
between different modalities [21,48], so as to transfer existing labeled data from other modalities. However,
the effectiveness of synthetic data heavily depends on the distribution gap between real and synthetic
data. A possible solution to reduce such gap is by matching their distributions through GANs [3,41].

In this paper, we present a general-purpose method to realize both medical volume translation as well
as segmentation. In brief, given two sets of unpaired data in two modalities, we simultaneously learn
generators for cross-domain volume-to-volume translation and stronger segmentors by taking advantage
of synthetic data translated from another domain. Our method is composed of several 3D/2D CNNs.
From the generator learning view, we propose to train adversarial networks with cycle-consistency [56] to
solve the problem of data without correspondence. We then propose a novel shape-consistency scheme
to guarantee the shape invariance of synthetic images, which is supported by another CNN, namely
segmentor. From the segmentor learning view, segmentors directly take advantage of generators by using
synthetic data to boost the segmentation performance in an online fashion. Both generator and segmentor
can take benefits from another in end-to-end training with one optimization objective.

We conduct extensive experiments with cardiac 3D image in MRI and CT, pancreatic abdomen scans
in MRI and CT, and mammography X-rays from two independent domains. Comprehensive experimental
results suggest that the proposed method achieves realistic modality translation and significantly improves
the performance of segmentation models with a variety of experimented architectures. We demonstrate
that using synthetic data as an isolated offline data augmentation process underperforms our end-to-end
online approach. On the image segmentation task, blindly using synthetic data with a small number of
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real data can even distract the optimization when trained in the offline fashion. However, our method
does not have this problem and leads to consistent improvement.

A preliminary version of this paper has been published in a conference paper [53], which is evaluated
on cardiac 3D images. In this paper, we have made significant extensions to generalize our methods
on multiple major 2D /3D imaging domains, aiming to provide a strong and comprehensive baseline for
relevant research. To be specific,

1. This paper shows extensive experiments to validate the proposed method, including CT and MRI
translation for pancreas segmentation and domain adaptation for mammogram X-rays for breast
lesion segmentation.

2. This paper validates our method using a variety of advanced segmentation networks, including
PSP-Net [54], U-Net [36], and Refine-Net [25] and show that our method performs generally well
and consistently boosts medical 2D/3D image segmentation performance.

3. This paper systemically analyzes the effect of synthetic data on segmentation, with the goal to
investigate the limitation of synthetic data, and inspire new scopes.

2 Related work

There are two demanding goals in medical image synthesis. The first is synthesizing realistic cross-
modality images [16,32], and the second is to use synthetic data from other modalities with sufficient
labeled data to help classification tasks (e.g., domain adaption [21]).

In computer vision, recent image-to-image translation is formulated as a pixel-to-pixel mapping using
encoder-decoder CNNs [13,20,22,26,56]. Several studies have explored cross-modality translation for
medical images, using probabilistic generative model [9], sparse coding [16,44], GANs [32,34], CNN [43],
etc. GANs have attracted wide interests in helping addressing such tasks to generate high-quality, less
blurry results [1,2,14,52]. More recent studies apply pixel-to-pixel GANs for brain MRI to CT image
translation [21,32] and retinal vessel annotation to image translation [10]. However, these methods
presume targeting images have paired cross-domain data. Learning from unpaired cross-domain data is
an attractive yet not well explored problem [27,44].

Synthesizing medical data to overcome insufficient labeled data attracted wide interests recently
[17,18,35,41,55]. Due to the diversity of medical modalities, learning an unsupervised translation between
modalities is a promising direction [10]. [21] demonstrates the benefits on brain (MRI and CT) images,
by using synthetic data as augmented training data to help lesion segmentation.

Apart from synthesizing data, several studies [24, 29,45, 46] use adversarial learning as an extra
supervision on the segmentation or detection networks. The adversarial loss plays a role of constraining
the prediction to be close to the distribution of groundtruth. However, such strategy is a refinement
process, so it is less likely to remedy the cost of data insufficiency.

3 Proposed Method

3.1 Multi-modal Volume Segmentation

There are a remarkable number of studies on medical image segmentation which is a key task in medical
image analysis. Convolutional neural network (CNN) in nature needs to be feed with large data. However,
medical data annotation is expensive. This paper mainly explore the possibility of augmenting realistic
synthetic data to help training segmentation networks.

Our method can be understood in two views: the generator view and the segmentor view. From the
segmentor view (Fig. 2), the goal is quite straightforward. We expect to train dual-modality segmentation
networks S4 and Sp (namely segmentors) for domain A and B data, respectively. The synthetic volumes,
provided by the generators (discussed below), provide augmented training dual-domain data to help
improve the segmentors. During training, S4 and Sp receive both real data and synthetic data that are
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Figure 2. The illustration of our method from the generator optimization view (top-left), the segmentor
optimization view (top-right), and the discriminator optimization view (bottom). The left panel illustrates
each architecture components. Domain A and Domain B are illustrated using two colors. Generator
view: Two generators learn cross-domain translation between domains A and B, which are supervised by
a cycle-consistency loss and a combination of an adversarial loss and a shape-consistency loss (supported
by segmentors), respectively. Segmentor view: Segmentors are trained by real data and extra synthetic
data translated from domain-specific generators. Discriminator view: Discriminators are trained to
distinguish real and synthetic data. The three optimization views are trained jointly and end-to-end.
Best viewed in color.

generated by generators online (see Fig. 2). Our method is model-agnostic. We show that our method
successfully improves several popular segmentation architectures in experiments.

Note that the most straightforward way to use synthetic data is fusing them with real data and then
train a segmentation CNN. We denote this as an ad-hoc offline data augmentation approach. Compared
with it, our method implicitly performs data augmentation in an online manner. Formulated in our
optimization objective, our method can use synthetic data adaptively, which thereby offers more stable
training and thereby better performance than the offline approach.

In the following sections, we introduce image-to-image translation on medical 2D/3D images with our
proposed method. Meanwhile, the segmentors assist the generators to guarantee shape-consistency.

3.2 Image-to-Image Translation for Unpaired Data

Generative adversarial networks (GANs) have been widely used for image translation in the applications
that need pixel-to-pixel mapping, such as image style transfer [19]. Conditional GAN [20] shows a
strategy to learn such translation mapping with a conditional setting to capture structure information.
However, it needs paired cross-domain images for the pixel-wise reconstruction loss. For some types of
translation tasks, acquiring paired training data from two domains is difficult or even impossible. Recently,
CycleGAN [56] and other similar methods [22,47] are proposed to generalize the Conditional GAN to
address this issue. Here we use CycleGAN to illustrate the key idea.

Given a set of unpaired data from two domains, A and B, CycleGAN learns two mappings, Gg : A — B
and G4 : B — A, with two generators G4 and Gp, at the same time. To bypass the infeasibility of
pixel-wise reconstruction with paired data, i.e. Gg(A) &~ B or G4(B) =~ A, CycleGAN introduces an
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effective cycle-consistency loss for G4(Gp(A)) ~ A and Gp(G A(B)) ~ B. The idea is that the generated
target domain data is able to return back to the exact data in the source domain it is generated from. To
guarantee the fidelity of fake data Gp(A) and G 4(B), CycleGAN uses two discriminators D4 and Dp
to distinguish real or synthetic data and thereby encourage generators to synthesize realistic data [14].

3.3 Problems in Unpaired Volume-to-Volume Translation

Lacking supervision with a direct reconstruction error between Gg(A) and B or G4(B) and A brings
some uncertainties and difficulties towards the desired outputs for more specified tasks. And it is even
more challenging when training on 3D CNNs.

To be specific, cycle-consistency has an intrinsic ambiguity with respect to geometric transformations.
For example, suppose generation functions, G4 and Gp, are cycle consistent, e.g., Ga(Gp(4)) = A.
Let T be a bijective geometric transformation (e.g., translation, rotation, scaling, or even nonrigid
transformation) with inverse transformation 771

It is easy to show that,

Gy=GaoT and Gy =GpoT™* (1)

are also cycle consistent. Here, o denotes the concatenation operation of two transformations. That means,
using CycleGAN, when an image is translated from one domain to the other it can be geometrically
distorted. And the distortion can be recovered when it is translated back to the original domain without
provoking any penalty in data fidelity cost. From the discriminator perspective, geometric transformation
does not change the realness of synthesized images since the shape of training data is arbitrary.

Such problem can destroy anatomical structures in synthetic medical volumes, which, however, has
not being addressed by existing methods. Our solution is to add a shape-consistency condition to prevent
such failure (see below).

3.4 Volume-to-Volume Cycle-consistency

To solve the task of learning generators with unpaired volumes from two domains, A and B, we adopt the
idea of the cycle-consistency loss (described above) for generators G4 and G to force the reconstructed
synthetic sample Ga4(Gp(x4)) and Gg(Ga(xp)) to be identical to their inputs x4 and zg:

Leye(Ga,GB) =By, pua)lGa(GB(7a)) — 2 all1]

+ Eappa oo [1GB(Ga@p)) — 2511, 2)

where x 4 is a sample from domain A and x5 is from domain B. p4() denotes the data distribution at a
certain domain. L. uses the L1 loss over all voxels (or pxiels), which shows better visual results than
the L2 loss.

3.5 Volume-to-Volume Shape-consistency

To solve the intrinsic ambiguity with respect to geometric transformations in cycle-consistency as we
pointed out above, our method introduces two auxiliary mappings using the segmentors defined above,
i.e., S4: A=Y and Sg : B — Y, to constrain the geometric invariance of synthetic data. They map
the translated data from respective domain generators into a shared shape space Y (i.e. a semantic label
space) and compute pixel-wise semantic ownership. The two mappings are represented by two CNNs,
namely segmentors as described above for segmentation.

Given a real volume x4 and its translation Gg(x4). To encourage them to have the same shape, the
key idea is to regularize G such that the difference (Diff) of them in the space Y to be small. We can
directly optimize the following Diff to achieve this goal

min Diff(Sp(Gp(v4)), ya) (3)
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where 14 denotes the ground truth shape representation of the real sample volume z 4. We specify Diff
as a standard multi-class cross-entropy loss for semantic segmentation (use Sp as the sample)

Diff(Sa(Galea). va) = —5 O valog(Sa(Gnea))) (@)

and define our shape-consistency loss as
Eshape(SA; SBa GA, GB) =

1 )
Egprpa(en) [_% Z y%log(SA(GA(wB))i)]

1 7
TEqs y~pa(aa) [_MZyAlog(SB(GB(xA))i)] ;

where v, y5 € {0,1,...,C} represent one voxel with one out of C classes. Ny and Ng are the total
numbers of voxels in volume x4 and xp, respectively. This objective optimizes G 4/ (refers to G4 and
G p in brevity) and keeps S,/ p fixed. Optimizing S4,p is just feeding in real and synthetic data together
and updating them. Recall that by feeding synthetic data here, we successfully transfer diverse data
with sufficient segmentation annotation (see Fig. 2 right) to the target domain and thereby improve
domain-specific segmentors, as described in Section 3.1.

Regularization Shape-consistency provides a level of regularization on generators. Recall that different
from Conditional GAN, since we have no paired data, the only supervision for G4(xp) and Gp(z4) is
the adversarial loss, which is not sufficient to preserve all types of information in synthetic images, such
as the annotation correctness. [41] introduces a self-regularization loss between an input image and an
output image to force the annotations to be preserved. Our shape-consistency performs a similar role to
preserve pixel-wise semantic label ownership, as a way to regularize the generators and guarantee the
anatomical structure invariance in medical volumes.

3.6 Objective

Given the definitions of cycle-consistency and shape-consistency losses above, we define our full objective
for optimizing G4 and Gp as:

L(Ga,Gp,Da,Dp, Sa,58) = Laan(Ga,Da)
+ Laan(Gp, Dp)
+ ALeyc(Ga,GB)
+ YLshape(Sa,SB, G4, GB)

The adversarial loss Lo an is defined as
L6ax(G,DB) = Evpmpyan |[1D5(@5)]l2]

+ Eopmpaton |1 D2(Gr(@a)) — 1]

where 1 denotes a matrix that has the same size with the output of D4,p but has all values equal to 1.
The definition for Loan(Ga, Da) is identical. This objective is trained in an adversarial manner, Gg
tries to minimize this objective and Dpg tries to maximize it. They resemble the usage of the methods
presented by [20,56]. We follow the Least Squires GAN (LSGAN) [30] loss to replace the original
cross-entropy loss in GANs with the simple mean squared loss. A is set to 10 and + is set to 1 during
training. To optimize the overall networks, we update them alternatively: optimizing generators G 4,p
with segmentors S4,p and discriminators D 4,p fixed and then optimizing S,,p and D,,p (they are
independent), respectively, with G 4, fixed.

The generators and segmentors are mutually beneficial, because to make the full objective optimized,
the generators have to generate synthetic data with lower shape-consistency loss, which, from another
angle, indicates lower segmentation losses over synthetic training data.

(7)
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Figure 3. Example outputs on 2D slides of 3D cardiovascular CT and MRI images of the results using
3D CycleGAN (second row) and ours (third row). The first row is the input samples. The original results
of CycleGAN have severe artifacts, checkerboard effects, and missing anatomies (e.g., descending aorta
and spine), while our method overcomes these issues and achieves significantly better quality.

4 Network Architecture and Details

This section discusses necessary architecture and training details for generating high-quality 3D images.

4.1 Architecture

Training deep networks end-to-end on 3D images is much more difficult (from optimization and memory
aspects) than 2D images. Instead of using 2.5D [39] or sub-volumes [21], our method directly deals with
holistic volumes. Our design trades-off network size and maximizes its effectiveness. There are several
keys of network designs in order to achieve visually better results. The architecture of our method is
composed by 3D fully convolutional layers with instance normalization [12] (performs better than batch
normalization [19]) and ReLU for generators or LeakyReLU for discriminators. CycleGAN originally
designs generators with multiple residual blocks [15]. Differently, in our generators, we make several
critical modifications with justifications.

First, we find that using both bottom and top layer representations are critical to maintain the
anatomical structures in medical images. We use long-range skip-connection in U-net [30] as it achieves
much faster convergence and locally smooth results. Conditional GAN also uses U-net generators, but we
do not downsample feature maps as greedily as it does. We apply 3 times downsampling with stride-2
3x3x3 convolutions totally, so the maximum downsampling rate is 8. The upsampling part is symmetric.
Two sequential convolutions are used for each resolution, as it performs better than using one. Second,
we replace transpose-convolutions to stride 2 nearest upsampling followed by a 3x3x3 convolution to
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realize upsampling as well as channel changes. It is also observed in [33] that transpose-convolution
can cause checkerboard artifacts due to the uneven overlapping of convolutional kernels. Actually, this
effect is even severer for 3D transpose-convolutions as one pixel will be covered by 2% overlapping kernels
(results in 8 times uneven overlapping). Fig. 3 compares the results with CycleGAN, demonstrating that
our method can obtain significantly better visual quality®.

For discriminators, we adopt the PatchGAN proposed by [11] to classify whether an overlapping
sub-volume is real or fake, rather than to classify the whole volume. Such approach limits discriminators
to use unexpected information from arbitrary volume locations to make decisions. Details of the network
configurations of the generators and discriminators are presented in Table 1.

For segmentors, we use U-Net [30], Refine-Net [25], and PSP-Net [51] to evaluate the performance
improvement of our method, with the goal to demonstrate that our method is robust to different segmentor
frameworks.

To be specific, for U-Net, 3 times symmetric downsampling and upsampling are performed by stride
2 max-poling and nearest upsampling. For each resolution, we use two sequential convolutions. For
Refine-Net, we keep its downsampling branch the same configuration as the U-Net and accordingly
implement one Refine-Net unit at each resolution scale in the upsampling branch. For PSP-Net, to
conduct equal comparison, we use the same downsampling branch as U-Net and Refine-Net. The PSP-Net
aggregates feature maps of three resolutions in its pyramid pooling module for image segmentation.
To make these segmentors seamlessly take in CT and MRI scans, we implement them with 3x3x3
convolutions so as to directly process images in 3D.

The Refine-Net upgrades U-Net by replacing U-Net’s long-range skip connection with long-range
residual connection presenting a more efficient gradient back-propagation through the network all the way
to early low-level layers. Differently, PSP-Net simplifies the upsampling branch of U-Net by replacing
its deconvolution-convolution units with direct bilinear interpolation resulting a much lighter model
size. Thus, the segmentors ranked by their model capacities are PSP-Net, U-Net, and Refine-Net, in a
descending order. We use such knowledge to investigate the correlation between the number of synthetic
images and the segmentor capacity.

4.2 Training details

We use the Adam solver [23] for segmentors with a learning rate of 2e—4 and closely follow the settings
in CycleGAN to train generators with discriminators. In the next section, for the purpose of fast
experimenting, we choose to pre-train the G4, and D 4,p separately first and then train the whole
network jointly. We hypothesized that fine-tuning generators and segmentors first is supposed to have
better performance because they only affect each other after they have the sense of reasonable outputs.
Nevertheless, we observed that training all from scratch can also obtain similar results. It demonstrates
the effectiveness to couple both tasks in an end-to-end network and make them converge harmonically.
We pre-train segmentors for 100 epochs and generators for 60 epochs. After jointly training for 50 epochs,
we decrease the learning rates for both generators and segmentors steadily for 50 epochs till 0. We
found that if the learning rate decreases to a certain small value, the synthetic images turn to show clear
artifacts and the segmentors tend to overfit. We apply early stop when the segmentation loss no longer
decreases for about 5 epochs (usually takes 40 epochs to reach a desired point). In training, the number
of training data in two domains can be different. We go through all data in the domain with a larger
amount as one epoch.

5 Experiments

In this section, the effectiveness of the proposed method is demonstrated with applications in multiple
contexts. First, it translates images between CT and MRI for non-rigid organ segmentation, e.g., cardiac
in chest and pancreas in abdomen. It is then applied to translate images between mammography X-rays

3We have experimented many different configurations of generators and discriminators. All trials did not achieve desired
visual results compared with our configuration.
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Ga | Da

Inputs(bx80x128x128x1) Inputs(bx80x128x128x1)
LReLU(IN3d(Conv3d(1, 64, 3, 2, 1))) LReLU(Conv3d(1, 64, 4, 2, 1))
IN3d(Conv3d(64, 64, 3, 1, 1)) LReLU(IN3d(Conv3d(64, 128, 4, 2, 1)))
| LReLU(IN3d(Conv3d(64, 256, 3, 2, 1))) LReLU(IN3d(Conv3d(128, 256, 4, 2, 1)))
IN3d(Conv3d(256, 256, 3, 1, 1)) LReLU(IN3d(Conv3d(256, 512, 4, 1, 1)))

| LReLU(IN3d(Conv3d(256, 256, 3, 2, 1))) | Sigmoid(Conv3d(512, 1, 4, 1, 1))
IN3d(Conv3d(256, 256, 3, 1, 1))

|

|

| Upsample2(LReLU())

| LReLU(IN3d(Conv3d(256, 256, 3, 2, 1))
| IN3d(Conv3d(256, 256, 3, 1, 1))
Upsample2(LReLU(Concat()))
LReLU(IN3d(Conv3d(512, 64, 3, 2, 1))
IN3d(Conv3d(64, 64, 3, 1, 1))
Upsample2(LReLU(Concat()))
LReLU(IN3d(Conv3d(128, 128, 3, 2, 1)))
Tanh(Conv3d(128, 1, 3, 1, 1))

Table 1. Network configurations of generators and discriminators implemented in the proposed Cy-
cleGAN. We denote network components LeakyReLU and InstanceNormalization3d as LReLU and
IN3d, respectively. We denote the scale-2 nearest upsampling operation, and concatention operation as
Upsample2 and Concat, respectively. We present convolutional layers and the hyperparameters in the
form of Conv3d(in channel, out channel, kernel size, stride, padding). ‘| ‘denotes the skip connection of
the generator. Size of inputs are shown as (batch_size x depthxwidthxheight x channel).

from two significantly different domains. For all of these applications, our method is targeting on
simultaneously producing high-quality synthesized images and improving target object (e.g., organ and
mass) segmentation.

5.1 Materials

Cardiac Datasets We introduce a 3D cardiovascular image dataset. Heart is a perfect example of the
difficulty in getting paired cross-modality data as it is a nonrigid organ and it keeps beating. Even if
there are CT and MRI scans from the same patient, they cannot be perfectly aligned. Then we evaluate
the two tasks we addressed in our method, i.e., volume segmentation and synthesis, both qualitatively
and quantitatively with our proposed auxiliary evaluation metrics.

We collected 4,354 contrasted cardiac CT scans from patients with various cardiovascular diseases
(2—3 volumes per patients). In addition, we collected 142 cardiac MRI scans with a new compressed
sensing scanning protocol. This true 3D MRI scan with isotropic voxel size is a new imaging modality,
only available in handful top hospitals. We crop 86x112x112 volumes around the heart center. The
endocardium of all four cardiac chambers is annotated. The left ventricle epicardium is annotated too,
resulting in five anatomical regions.

We denote CT as domain A data and MRI as domain B. We organize the dataset in two sets S;
and Sy. For &1, we randomly select 142 CT volumes from all CT images to match the number of MRI
volumes. For both modalities, 50% data is used as training and validation and the rest 50% as testing
data. For Sy, we use all the rest 4,212 CT volumes as an extra augmentation dataset, which is used to
generate synthetic MRI volumes for segmentation. We fix the testing data in S; for all experiments.
Pancreatic Datasets Pancreas is one of the most challenging abdomen organs to segment for its
shape variability and boundary vagueness. It is expensive to present machine learning methods with
large size training data which is fully manual annotated. Aggregating data from multiple sources via
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Gradients

Translation

Figure 4. Ilustration of the strategies to use synthetic data to improve segmentation. The left is the
compared ad-hoc offline approach, which prepares the real and synthetic data separately and train a
segmentation network. The right is our online approach: the real data in domain B is fed into the
generator to synthesize domain A data. The domain A segmentor is trained with real and synthetic data
jointly. The segmentor and generator cooperate with each other and minimize a joint objective.

modality translation may serve as a surrogate to this problem. To evaluate the proposed method in this
circumstance, we prepared two datasets with 82 CT and 78 MRI scans, respectively. The CT dataset is
collected from a publicly-availabel data source [3,37]. In addition, the MRI dataset is collected from our
in-house data source.

For pancreas datasets, we setup S; by randomly selecting 40 cases from each of the CT and MRI
datasets for model training and preserve the rests as testing data. We directly process them in 3D by
cropping sub-volumes centered at the pancreas and have them resampled to the size of 80x64x128.
Mammogram Datasets Finally, we consider two publicly-available mammogram datasets, which are
Breast Cancer Digital Repository (BCDR) [28] and INbreast [11,31]. However, BCDR and INbreast are
generated from different data sources and stored in different formats. According to our experience, the
large appearance dependency makes two datasets domain isolated. Our method is useful to remove the
barrier and make them benefit to each other. The BCDR contains 753 annotated lesion regions and the
INbreast only has 116. Similar to the CT data in the cardiac and pancreatic dataset, we use images
and annotations in BCDR to assist segmenting INbreast. To setup S;, we randomly select 116 lesions
from BCDR to match the number of lesions in INbreast. For both domains, 50% is used as training and
validation and the rest 50% as testing data. We also set up So, which uses all the rest 637 BCDR lesions
as the extra augmentation dataset. We crop subimages centered at the lesion regions with adequate
padding, which is sized as 5% of image diagonal. We resize the subimages to 1 x 256 x 256 (i.e. a special
3D volume with unit depth).

5.2 Evaluation Metrics

Shape invariance evaluation For methods of GANs to generate class-specific natural images, [10]
proposes to use the Inception score to evaluate the diversity of generated images, by using an auxiliary
trained classification network.

Inspired by this, we propose the S-core (segmentation score) to evaluate the shape invariance quality of
synthetic images. We train two segmentation networks on the training data of respective modalities and
compare the multi-class Dice score of synthetic volumes. For each synthetic volume, S-score is computed
by comparing to the groundtruth of the corresponding real volume it is translated from. Hence, higher
score indicates better-matched shape (i.e., less geometric distortion).

Segmentation Evaluation Here we show how well our method can use the synthetic data and help
improve segmentation. We compare to an ad-hoc approach as we mentioned above. Specifically, we
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S-score (%)
A B
G w/o SC 66.8 67.5

Dataset Method

Cardiac o /80 (Ours)  69.2  69.6
Pancr G w/o SC 58.5  53.4

anereas g w/ SC (Ours) 62.3 59.4
Moo, G w/o SC 698 645

G w/ SC (Ours) 72.6 68.9

Table 2. Shape quality evaluation using the proposed S-score (see text for definition) for synthesized
images. The synthetic volumes using our method has much better shape quality on both modalities. SC
denotes shape-consistency. In cardiac and pancreas datasets, A and B refer to CT and MRI, respectively.
While in mammogram datasets, A and B refer to BCDR and INbreast, respectively.

individually train two segmentors, denoted as Sy and Sp. We treat the segmentation performance of
them as Baseline (R) in the following. Then we train generators G4 and Gz with the adversarial and
cycle-consistency losses (setting the weight of the shape-consistency loss to 0). Then by adding synthetic
data, we perform the following comparison:

1. Ad-hoc approach (ADA): We use G4 and G to generate synthetic data (To make fair comparison,
both synthetic data G4/p(xp/a) and reconstructed data Ga,5(Gp/a(za/p)) are used). We

fine-tune S /B using synthetic together with real data (Fig. 4 left)*.

2. Our method: We join Sa, Sp, Ga, and G (also with discriminators) and fine-tune the overall
networks in an end-to-end fashion (Fig. 4 right), as specified in the training details.

5.3 Cross-domain Translation Evaluation

We evaluate the generators both qualitatively and quantitatively. Fig. 5 shows some typical synthetic
results of our method for cardiac images, pancreatic images, and mammogram images. As can be observed
visually, the synthetic images are close to real images and no obvious geometric distortion is introduced
during image translation. Our method well preserves object anatomies, for example, aorta and spine in
cardiac segmentation.

Table 2 shows the S-score of synthetic data from both domains for generators without the proposed
shape-consistency loss, denoted as G w/o SC. We treat it as the baseline for comparison. Note that it is
mostly similar with CycleGAN but using our optimized network designs. As can be seen, our method
(G w/ SC) with shape-consistency achieves substantial improvement over the baseline for all the three
datasets.

5.4 Segmentation Results

In the first experiment on S;, we test the scenario that how well our method uses synthetic data to
improve segmentation given only limited real data. Since we need to vary the number of data in one
modality and fix another, we perform the experiments on both modalities, respectively.

Using the standard multi-class Dice metric [12], Table 3 compares the segmentation results for cardiac
datasets. We use 14% real data and all synthetic data from the counter modality to train the U-Net
segmentor and observe the proposed method achieves much better performance on both modalities. We
notice ADA even deteriorates the performance. We speculate that it is because the baseline model trained

4At each training batch, we take half real and half synthetic data to prevent possible distraction from low-quality
synthetic data.
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Cardiac Pancreas

Translate MRI to CT Translate CT to MRI Translate MRI to CT

Mammogram
Translate BCDR to INBreast Translate INBreast to BCDR

Figure 5. Qualitative results of the proposed method for image translation. On the left, we show
three orthogonal cuts through the center of 3D cardiac volumes. On the top right, we show pancreas
volumes of the maximum cross area. On the bottom right, we show real and synthetic lesion patches
from mammography X-rays.

Dice score (%)
CcT MRI

Baseline (R) 67.8 70.3
ADA (R+S) 660 710
Ours (R+S) 744 73.2

Table 3. The segmentation performance comparison. The baseline model is trained with only Real data
(Baseline (R)), the second and third rows show the boosted results by using Synthetic data with the
comparing ADA and our method, respectively.

Method

Method PSP-Net U-Net Refine-Net
cT MRI CcT MRI CcT MRI
Baseline (R) 60.0751¢  47.775%7 7587583 6417750 77.87878  66.118L°
ADA (R+S) 61.37739 5351071 76.81509  66.17502 78.278%2 70,0512
Ours (R+S) 6157741 53.875] 7727550 67.37522 78.87587  70.4159%
Tabl(?,|r IélrchaxPauncreaus segmentation, we present the segmentation results with Dice score (%) in the form of

mean_ .. -

with very few real data has not been stabilized. Synthetic data distracts optimization when used for
training offline. While our method adapts them fairly well and leads to significant improvement.

Table 4 compares the segmentation results for pancreas. We use 25% real data and all synthetic data
from the counter modality to train U-Net, PSP-Net, and Refine-Net and observe the proposed method
achieves the best performance on both modalities for all segmentors. We find the worst cases in MRI
have been largely relieved when synthetic data is introduced. For example, the worst case of Refine-Net
is 0.01 Dice score meaning that the segmentor fails to allocate pancreas. While, as augmented by the
synthetic data, the worst case in our method has been improved to 0.31 Dice score presenting a much
lower missed diagnosis rate.

It worth to notice that the reported score is lower than some pancreatic segmentation methods on these
two datasets [5,38,57]. It is because we use a smaller input volume size and a compact U-net configuration
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Dice score (%)

Method
BCDR INBreast
n, Baseline (R)  54.3 66.6
£ ADA (R+S)  63.2 69.6
Ours (R+S)  62.8 71.6
+ Baseline (R)  62.2 66.2
5 ADA (R+S) 682 70.6
Ours (R+S)  68.3 76.4
& Baseline (R)  72.6 76.5
% ADA (R+S) 749 80.4
= Ours (R+S)  75.0 81.1

Table 5. Mammography segmentation.

for GPU memory consideration. Our goal here is to show the relative improvement with our method.
However, as we validated, a full-sized U-Net with our implementation trained with full resolution CT and
MRI images achieves 85.3% and 79.9% Dice scores, respectively. The current comparable state-of-the-art
for CT is 84.6% [57] and for MRI is 80.7% [5]. Therefore, we argue that our method can straightforwardly
achieve state-of-the-art performance on these two datasets.

Table 5 presents the results for mammogram lesion segmentation. We use 14% of INbreast and 48%
of BCDR (the result would be unstable if fewer BCDR images are used for model training). In the
case of U-Net, we observe that our method significantly outperforms its baseline by 10% for INbreast
segmentation. Although our result is not directly comparable with the state-of-the-art [11], we notice that
synthetic training data systematically improves both BCDR and INBreast segmentation from baseline
demonstrating the importance of including new training data for mammogram lesion segmentation and
the effectiveness of the proposed image translation method.

The two datasets have large appearance dependency. A direct mixture of both datasets does not
produce better segmentation accuracy. We observe 4% Dice score loss on INbreast segmentation when a
direct combination of both datasets is used for segmentor training.

Finally, we demonstrate the qualitative segmentation results of our method in Fig. 6. By only using
extra synthetic data, our method largely corrects the segmentation errors. We observe our method
produces better-shaped results than its baseline. For example, as shown in the top right of Fig. 6,
pancreas tail parts are well segmented in our results but lost in the baseline results.

5.5 Experimental Analysis

Effectiveness of using synthetic data We show the results by varying the number of real data used
in Fig. 7 (left and middle columns). Our method exhibits consistently better performance than the
ADA. In addition, we notice the increment is growing slower as the number of real data increases. We
hypothesize that is that more real data makes the segmentors get closer to its capacity, so the effect of
extra synthetic data gets smaller. But this situation can be definitely balanced out by increasing the size
of segmentors with sufficient GPU memory.

We then apply the experiment on Sz, which has much more CT (BCDR) data, so we aim at boosting
the MRI (INbreast) segmentor. We vary the number of used synthetic data and use all real MRI (INbreast)
data. Fig. 7 (right column) compares the results. Our method still shows better performance. As can be
observed, for cardiac segmentation, our method uses 23% synthetic data to reach the accuracy of the
ADA when it uses 100% synthetic data. For mammogram lesion segmentation, our method outperforms
ADA in all cases.

With the S; mammogram dataset, we present the second experiment on investigating synthetic data
with different segmentors including U-Net, PSP-Net, and Refine-Net. Here, we first train each segmentor
on 100% real INbreast training images to generate baseline Dice scores. With these pre-trained segmentors,
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Cardiac Pancreas

Groundtruth Baseline Baseline

BCDR

INBreast

Figure 6. The qualitative evaluation of segmentation results on MRI. We show the axial and sagittal
views of 2 cardiac samples, the axial view of 9 MRI pancrease samples and segmentations of 8 mammogram
lesions on the left, top right and bottom right, respectively. Our method boosts the baseline segmentation
network with only extra synthetic data. As can be observed, the segmentation errors of the baseline are
largely corrected. Best viewed in color.

we then finetune them with the proposed method on extended training sets, which contains synthetic
images up to 8 times of the number of real images. In Fig. 8, we observe our method outperforms the
corresponding baselines by large margins. For example, our method improves Refined-Net from 80.4 to
84.8 (Dice scores). For all of the three segmentors, we notice the major improvement is gained by adding
the amount of synthetic data to as many as 3 times of the real data. To explain this, we argue that
the segmentors may have reached the upper bound of their capacities. To represent the effectiveness of
synthetic data of larger data size, it may require stronger segmentors.

Gap between synthetic and real data Reducing the distribution gap between real and synthetic
data is the key to make synthetic data useful for segmentation. Here we show a way to interpret the gap
between synthetic and real data by evaluating their performance to improve segmentation in terms of
cardiac datasets. On dataset S;, we train an MRI segmentor using 14% real data. Then we boost the
segmentor by adding 1) pure MRI real data, 2) using ADA, and 3) using our method. As shown in Fig.
9, our method reduces the gap of the ADA significantly, i.e., by 61% given 14% real data and 20.9%
given 85% real data.

Moreover, we find that when using the synthetic data as augmented data offline (our comparing
baseline), too much synthetic data could diverge the network training. While in our method, we did not
observe such situation. However, we also observe that the gap is more difficult to reduce the number of
reading data increases. Although one of the reasons is due to the modal capacity, we believe the solution
of this gap-reduction worth further study.

6 Conclusion

In this paper, we present a novel method towards cross-modal medical 3D/2D images translation and
segmentation, which are two significant tasks in medical imaging. We address three key problems that
are important in synthesizing realistic medical images: 1) learn from unpaired data, 2) keep anatomy
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Cardiac CT segmentation Cardiac MRI segmentation Cardiac MRI segmentation
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Figure 7. The segmentation accuracy (mean Dice score) comparison to demonstrate the effectiveness
of our method of using Synthetic data to boost segmentation. The left plot shows the segmentation
accuracy by varying the percentage of Real data used for training segmentation on CT (BCDR) using
dataset Sy, using a equal number of synthetic data. Baseline (R) is trained with only real data. Others
are trained from it, e.g., ADA (R+S) is trained by adding only S data. The middle plot shows the same
experiments on MRI (INbreast). The right plot shows results by varying the number of synthetic data on
MRI (INbreast) using dataset So using a equal number of real data. Our method has consistently better
performance. See text for details about comparing methods.
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Figure 8. The effectiveness of synthetic mammogram images with different segmentors. On the three
segmentors, we repeat the experiment that each segmentor is first trained with BCDR images presenting
the baseline Dice score. We then add synthetic data upto 8 times of the real data and observe the Dice
scores.
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Figure 9. The gap analysis of Real and Synthetic cardiac data. For all comparing methods, we use one
pre-trained network with 14% real data, whose Dice score is 70.3%. Then we vary the number of R or
S data used to boost segmentation of Baseline (R+R), Baseline (R+S), and Ours (R+S). Our method
significantly reduces the gap for all settings.

(i.e. shape) consistency, and 3) use synthetic data to improve volume segmentation effectively. Acquiring
large annotated data for each of medical imaging domains is very expensive. Our method is valuable to
reduce the isolation in different modalities and make them beneficial to each other for domain adaptation
and segmentation. With extensive experiments on datasets of three different medical imaging modalities,
we validate the effectiveness and superiority of the proposed method.
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